

Status of the LDX Project

Columbia University

Darren Garnier

Columbia University

for the LDX Team

Presented at the
Innovative Confinement Concepts Workshop 2000
Berkeley, California, February 24, 2000

Outline

- Short introduction to LDX
 - Intro to Dipole physics
 - Goals of LDX program
- "A day in the life" of LDX
 - > LDX Machine Design
 - Construction Progress of Major Components
- Experimental Plan and Schedule

Why is dipole confinement interesting?

- Simplest confinement field
- High- β confinement occurs naturally in magnetospheres (β ~ 2 in Jupiter)
- Possibility of fusion power source with nearclassical energy confinement
- Opportunity to study new physics relevant to fusion and space science

Dipole Plasma Confinement

If $p_1V_1^{\gamma} = p_2V_2^{\gamma}$, then interchange does not change pressure profile.

For
$$\eta = \frac{d \ln T}{d \ln n} = \frac{2}{3}$$
, density and temperature profiles are also stationary.

- Toroidal confinement without toroidal field
 - Stabilized by plasma compressibility
 - Not average well
 - No magnetic shear
 - No neoclassical effects
 - No TF or interlocking coils
- Poloidal field provided by internal coil
 - Steady-state w/o current drive
 - \rightarrow J_{||} = 0 -> no kink instability drive

Dipole Confinement continued...

- Marginally stable profiles satisfy adiabaticity condition.
 - M.N. Rosenbluth and Longmire, Ann. Phys. 1 (1957) 120.

$$\delta(pV^{\gamma}) = 0$$
, where $V = \oint \frac{dl}{B}$, $\gamma = \frac{5}{3}$

- Equilibria exist at high- β that are interchange and ideal ballooning stable
- For marginal profiles with $\eta \le 2/3$, dipoles are also drift wave stable.
 - Near-classical confinement ?
- No Magnetic Shear -> Convective cells are possible
 - For marginal profiles, convective cells convect particles but not energy.
 - Possible to have low τ_p with high τ_E .
 - But, good curvature region near ring, convective cells can cause anomalous transport

Convective Cells

- How are they formed?
 - Are they the nonlinear saturation of interchange modes?
 - How asymmetric does the heating profile need to be to drive them?
- Do they degrade energy confinement?
 - Can we have high energy confinement with low particle confinement?
- Explore methods for driving and limiting.
 - Current drive ?

LDX Experimental Goals

Investigate high-beta plasmas stabilized by compressibility

- Also the stability and dynamics of high-beta, energetic particles in dipolar magnetic fields
- Examine the coupling between the scrape-off-layer and the confinement and stability of a high-temperature core plasma.

Study plasma confinement in magnetic dipoles

- > Explore relationship between drift-stationary profiles having absolute interchange stability and the elimination of drift-wave turbulence.
- > Explore convective cell formation and control and the role convective cells play in transport in a dipole plasma.
- ➤ The long-time (near steady-state) evolution of high-temperature magnetically-confined plasma.
- Demonstrate reliable levitation of a persistent superconducting ring using distant control coils.

LDX: Experimental Overview

- LDX consists 3 major components:
 - a high performance super conducting floating coil
 - charging coil
 - vacuum vessel
- Other components include
 - Launcher/Catcher system
 - Control system & coils
 - Levitation coil
 - Plasma heating system (multifrequency ECRH)

LDX Vacuum Vessel

- Vacuum Vessel
 - > Specifications
 - 5 meter (198") diameter, 3 m high, elevated off chamber floor
 - 11.5 Ton weight
 - Manufactured by Vacuum Technology Associates / DynaVac
- Ports
 - > 2 50" ports (for floating ring installation)
 - > 2 24" ports for cryopumping
 - > 10 16.5" horizontal diagnostic ports
 - > 8 10" horizontal ports
 - > 8 laser alignment ports
 - Room for more!
- Construction Complete!
 - Pumped down and leak checked

LDX Floating Coil Overview

- Unique high-performance
 Nb3Sn superconducting coil
 - > 1.5 MA, 800 kJ
 - > 1300 lbs weight
 - > 8 hr levitation
 - Inductively charged
- Cryostat made from 3 concentric tori
 - Design < 1 Watt heat leak</p>
 - Helium Pressure Vessel
 - Holds 1.5 kg of He
 - 125 Atm at room temperature
 - Cooling tube heat exchanger
 - Lead Radiation Shield
 - 75 kg Pb, good thermal capacity
 - Outer Vacuum Shell
 - Laser alignment surface

F-Coil Cross-Section

- 1. Magnet Winding Pack
- 2. Heat Exchanger tubing
- 3. Winding pack centering clamp
- 4. He Pressure Vessel (Inconel 625)
- 5. Thermal Shield (Lead/glass composite)
- 6. Shield supports (Pyrex)
- 7. He Vessel Vertical Supports/Bumpers
- 8. He Vessel Horizontal Bumpers
- 9. Vacuum Vessel (SST)
- 10. Multi-Layer Insulation
- 11. Utility lifting fixture
- 12. Laser measurement surfaces
- 13. "Visor" limiter attachment

F-Coil Superconductor

 Nb3Sn cable-in-channel superconductor manufactured in collaboration between industry, universities and national laboratories

Contracted Vendor	IGC-AS
Strand production and testing	IGC
Cabling	LBL
Heat treatment	BNL
Soldering into Cu channel	IGC
Conductor sample testing	BNL
Conductor quality assurance	MIT/Everson

- "State of the Art" conductor now complete
 - Samples tested and meet performance requirements
 - > 2000 Amps @ 6T and 10K
 - Currently being wound at Everson Electric on magnet coil form.

8 mm

Superconducting Charging Coil

Large superconducting coil

- NbTi conductor
 - 4.5°K LHe pool-boiling cryostat with LN2 radiation shield
- > 1.2 m diameter warm bore
- > 5.6 T peak field
- 11.2 MJ stored energy
- Cycled 2X per day
 - Charging time for F-Coil < 30 min.</p>
- Fabrication Status
 - Under contract with Efremov Institute, St. Petersburg, Russia
 - Expected delivery Winter 00/01.
 - "Critical Path" item for project.

LDX Experiment Cross-Section

Launcher/Catcher

- "Simplified" Launcher/Catcher can be used in both supported and levitated operation
 - ➤ In supported operation "bicycle" wheels clamp floating coil in fixed position
 - In levitated operation, vertical spacing of wheels is increased
 - For upper levitation, all components are outside LCFS
- Currently being designed at PPPL
 - Dynamic testing to begin in late Spring 2000.

Levitation Control System Schematic

Multi-frequency ECRH on LDX

- Multi-frequency electron cyclotron resonant heating
 - Figure 1. Effective way to create high- β hot electron population
 - Tailor multi-frequency heating power to produce ideal (stable) pressure profile with maximum peak β.
 - Profile control and improved ECRH efficiency seen in mirror program when using multiple frequencies.

Instabilities & Confinement

Pcr

R

Ρ

- Instability should exist when: p' > p'_{critical}
- Investigate nature of instability
 - How does it saturate?
 - How much transport is driven?
- Maximize β when:
 - p' < p'_{critical} everywhere
 - \triangleright What limits β ?

Multi-frequency ECRH in ST-1 Mirror

FIG. 11. Spectra of low-frequency fluctuations in the cold-electron end-loss current for four different heating configurations.

FIG. 9. Total stored energy as a function of frequency separation for twofrequency heating. The scale gives the electron energy for which the bounce frequency is equal to the applied frequency mismatch.

- Widely spread (∆f/f > 10%) multiple frequencies allowed stable operation
 - Low frequency fluctuations in cold electron end losses are reduced by order of magnitude
 - Large increase in stored energy in high-β hot electrons
- Narrowly spread (∆f ~ f_{bounce})
 frequencies improved efficiency of hot electron heating
 - ➤ Elimination of super-adiabatic effects that create phase-space barrier for further heating of hot electrons.
- B. Quon et al, Phys. Fluids 28, (1985) 1503.

Helmholtz Shaping Coils

$$\frac{P_{core}}{P_{edge}} \le \left(\frac{V_{edge}}{V_{core}}\right)^{\gamma}$$
 where $V = \oint \frac{d\ell}{B}$, and $\gamma = \frac{5}{3}$

Helmholtz Coil: 0 kA
Compression Ratio: 228
Adiabatic Pressure Ratio: 8500

Helmholtz Coil: 80 kA
Compression Ratio: 14
Adiabatic Pressure Ratio: 85

Compressibility can be adjusted to change marginal stable pressure by factor of 100!

LDX Experimental Plan

- Supported Dipole Hot Electron Plasmas
 - Spring 2001
 - \triangleright High- β Hot Electron plasmas with mirror losses
 - ECRH Plasma formation
 - Instabilities and Profile control
- Levitated Dipole Hot Electron Plasmas
 - Winter 2001
 - No end losses
 - $\triangleright \beta$ enhancement
 - Confinement studies
- Thermal Plasmas
 - Convective cell studies
 - Concept Optimization / Evaluation

Hot Electron Plasmas

- Supported Dipole Campaign
 - Low density, quasi steady-state plasmas formed by multifrequency ECRH with mirror losses
 - > Areas of investigation
 - Plasma formation
 - Density control
 - Pressure profile control
 - Supercritical profiles & instability
 - Compressibility Scaling
 - ECRH and diagnostics development
- Levitated Dipole Campaign
 - No end losses
 - > Areas of investigation
 - Global Confinement
 - β enhancement and scaling

Hot Electron Plasma Diagnostics

- Magnetics (flux loops, hall probes)
 - Plasma equilibrium shape
 - \triangleright magnetic β & stored energy
- Reflectometer
 - Density profile
- X-ray pulse height energy analyzer
 - ➤ Hot electron energy distribution / profile
- XUV arrays
 - Instabilities and 2-D profiles
- D_a camera
- Edge probes

LDX Magnetics Measurements

Difference

- DC dipole field means standard integrator diagnostics can be used
- Superconductor dipole "freezes-in" flux giving an internal boundary condition for GS solver

Future LDX Project Milestones

- Floating Coil driven test
 - > Full current test with leads in test cryostat
- F-Coil He pressure vessel sealed
- Floating Coil & Charging Station Delivery
- Integrated Systems Test
 - > Small current induced in F-Coil with copper coil
- Charging Coil Delivery
- First Plasma
- First Levitation

Conclusions

- Physics of the dipole is interesting and important for Fusion
- LDX is the first experiment to investigate plasmas stabilized by compressibility with near-classical confinement
 - Capable of directly testing effects of compressibility, pressure profile control and axisymmetry on plasma stability and confinement
- LDX is a "world class" superconducting fusion experiment
- All major parts are either finished or under construction
- Look out for us next year! Watch http://www.psfc.mit.edu/ldx/